Using Level-1 Homomorphic Encryption To Improve Threshold ...

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to ethereum [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to privacycoins [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to CryptoCurrencies [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to ethtrader [link] [comments]

Why you should invest in OCEAN Protocol

Why I am investing in Ocean Protocol
tl;dr
Unlocking data for AI
Partnered with; Unilever, Roche, Johnson&Johnson, Aviva, MOBI (BMW, Ford, GM)
Currently at $0.03, IEO price $0.12, ICO price $0.2.
Staking coming Q2.
THE PROBLEM
The world has a data problem. The more we create, the more we are forced to entrust it all to fewer data monopolies to profit from.
Data is also siloed, and generally hosted on proprietary databases across vast systems, geographies and business units. Whilst there have been fixes and APIs that have helped improve the sharing of corporate and public data, fundamentally this doesn’t change the fact that client-server architecture and corporate IT networks are inherently designed to prevent data sharing.
Regulation and privacy laws combine to make organisations concerned about sharing data both internally and publicly unless forced to do so. The Health Insurance Portability and Accountability Act (HIPAA) in the US or the Data Protection Act in the UK explicitly state how and what data can and cannot be shared. But these are complicated policies. The technical difficulty of implementing them, combined with bad UX means people err on the side of caution when approaching these issues. There is simply no incentive to outweigh the risk and hassle of sharing data.
Even where sharing is encouraged, current infrastructure makes monetising data through open source licensing complex and equally difficult to enforce. So ultimately, you are left with two options: give your data away for free (which what most individuals do) or hoard it and see if you can make sense of it at some time in the future (which is what most companies do). Neither is very efficient or effective.
The consequence is a few increasingly powerful companies get the vast majority of data at little cost, and large amounts of valuable data are sat dormant in siloed databases.
Simply put, there is no economic incentive to share data. This is a massive issue in the AI market (expected to be worth $70 billion in 2020 according to BoA Merrill).
The best AI techniques today, such as deep learning, need lots (and lots) of quality and relevant datasets to deliver any kind of meaningful value. Starving most new entrants (such as startups and SMEs) of the ability to compete.
AI expertise and talent is expensive and hard to come by, typically concentrating within organisations that already have the data to play with or promise to generate vast quantities of it in the future. Companies like Google, Facebook, Microsoft and Baidu swallow up almost all the best talent and computer science and AI PhDs before they even come onto the jobs market.
This creates a self-propagating cycle, increasingly benefiting a few established organisations who are able to go on to dominate their respective markets, extracting a premium for the priviledge. Think of Facebook & Google in the Ad Market, Amazon for Retail, now imagine that happening across every single industry vertical. Data leads to data network effects, and subsequent AI advantages which are extremely hard to catch up with once the flywheel starts. The way things are going, the driver-less car market will likely consolidate around one single software provider. As old industries like education, healthcare and utilities digitize their operations and start utilizing data, the same will likely happen there too.
The benefits of the 4th Industrial Revolution are in the hands of fewer and fewer organisations.
Currently the expectation is that companies, rather than trying to compete (if they want to stay in business), are expected to concede their data to one of the big tech clouds like Amazon or Microsoft to be able to extract value from it. Further extending the suppliers’ unfair advantage and increasing their own dependency. Look at autonomous vehicles, German manufacturers unable to compete with Silicon Valley’s AIs for self driving cars could be left simply making the low-value hardware whilst conceding the higher-value (and margin) software to companies that drive the intelligence that control them.
I’ve always argued companies don’t want Big Data. They want actionable intelligence. But currently most large organisations have vast dumb data in silos that they simply don’t know what to do with.
But what if…
they could securely allow AI developers to run algorithms on it whilst keeping it stored encrypted, on-premise.
And open up every database at a ‘planetary level’ and turn them into a single data marketplace.
Who would own or control it? To be frank, it would require unseen levels of trust. Data is generally very sensitive, revealing and something you typically would not want to share with your competitors. Especially in say, consumer health how could that be possible with complex privacy laws?
What’s needed is a decentralised data marketplace to connect AI developers to data owners in a compliant, secure and affordable way. Welcome to Ocean Protocol.
Why decentralised and tokenised?
Primarily because of the need for the provenance of IP, affordable payment channels, and the ensure no single entity becomes a gatekeeper to a hoard of valuable data. Gatekeeper, in the sense that they can arbitrarily ban or censor participants but also to avoid the same honeypot hacking problems we encounter in today’s centralised world.
But aren’t there already decentralised data market projects?
The Ocean team have focused their design on enabling ‘exchange protocols’, resulting in massive potential for partnerships with other players in the domain. As investors in IOTA, understanding how this could work with their Data Marketplace is an interesting case in point.
INNOVATIONS
What we like most about Ocean is they have been deploying many of the constituent parts that underpin this marketplace over the last 4 years via a number of initiatives which they are now bringing together into one unified solution:
(digital ownership & attribution) (high throughput distributed database to allow for high throughput transactions) (Scalability – build on proven BigchainDB / IPDB technology for “planetary scale”) (blockchain-ready, community-driven protocol for intellectual property licensing)
What is being added is a protocol and token designed to incentivize and program rules and behaviours into the marketplace to ensure relevant good quality data is committed, made available and fairly remunerated. The design is prepared for processing confidential data for machine learning and aggregated analysis without exposing the raw data itself. Ocean will facilitate in bringing the processing algorithms to the data through on-premise compute and, eventually, more advanced techniques, like homomorphic encryption, as they mature.
OCEAN Token
Think of the Ocean Token as the ‘crypto asset’ that serves as the commodity in the data economy to incentivise the mass coordination of resources to secure and scale the network to turn in to actionable intelligence.
If Ocean is about trading data, can’t it use an existing cryptocurrency as its token, like Bitcoin or Ether?
While existing tokens might serve as a means of exchange, the Ocean protocol requires a token of its own because it uses its a specific form of monetary policy and rewards. Users get rewarded with newly minted tokens for providing high quality, relevant data and keeping it available. This means the protocol requires control over the money supply and rules out using any existing general purpose protocols or tokens. Furthermore, from the perspective of Ocean users, volatility in an uncorrelated token would disrupt the orderly value exchange between various stakeholders in the marketplace they desire.
OCEAN Data Providers (Supplying Data)
Actors who have data and want to monetise it, can make it available through Ocean for a price. When their data is used by Data Consumers, Data Providers receive tokens in return.
OCEAN Data Curators (Quality Control)
An interesting concept to Ocean is the application of curation markets. Someone needs to decide what data on Ocean is good and which data is bad. As Ocean is a decentralised system, there can’t be a central committee to do this. Instead, anyone with domain expertise can participate as a Data Curator and earn newly minted tokens by separating the wheat from the chaff. Data Curators put an amount of tokens at stake to signal that a certain dataset is of high quality. Every time they correctly do this, they receive newly minted tokens in return.
OCEAN Registry of Actors (Keeping Bad Actors Out)
Because Ocean is an open protocol, not only does it need mechanisms to curate data, it needs a mechanism to curate the participants themselves. For this reason a Registry of Actors is part of Ocean, again applying staking of tokens to make good behaviour more economically attractive than bad behaviour.
OCEAN Keepers (Making Data Available)
The nodes in the Ocean network are called Keepers. They run the Ocean software and make datasets available to the network. Keepers receive newly minted tokens to perform their function. Data Providers need to use one or more Keepers to offer data to the network.
BRINGING IT ALL TOGETHER
Ocean is building a platform to enable a ‘global data commons’. A platform where anyone can share and be rewarded for the data they contribute where the token and protocol is designed specifically to incentivise data sharing and remuneration.
So let’s see that in the context of a single use-case: Clinical Trial Data
Note: that this use-case is provided for illustrative purposes only, to get a feel for how Ocean could work in practice. Some of the specifics of the Ocean protocol have yet to be finalised and published in the white paper, and might turn out different than described here.
Bob is a clinical physician with a data science background who uses Ocean. He knows his industry well and has experience understanding what types of clinical data are useful in trials. Charlie works at a company that regularly runs medical trials. He has collected a large amount of data for a very specific trial which has now concluded, and he believes it could be valuable for others but he doesn’t know exactly how. Charlie publishes the dataset through Ocean and judging its value (based on the cost to produce and therefore replicate), as well as his confidence in its overall quality, he stakes 5 tokens on it (to prove it is his IP, which if people want to use they must pay for). Charlie uses one of the Keeper nodes maintained by his company’s IT department. Bob, as a Data Curator of clinical trial data on Ocean, is notified of its submission, and sees no one has challenged its ownership. By looking at a sample he decides the data is of good quality and based on how broad its utility could be he stakes 10 Ocean tokens to back his judgement. Bob is not alone and quickly a number of other Data Curators with good reputation also evaluate the data and make a stake. By this point a number of AI developers see Charlie’s dataset is becoming popular and purchase it through Ocean. Charlie, Bob and the other curators get rewarded in newly minted tokens, proportional to the amount they staked and the number of downloads. The Keeper node at Charlie’s company regularly receives a request to cryptographically prove it still has the data available. Each time it answers correctly, it also receives some newly minted tokens. When Bob and Charlie signed up to join Ocean, they staked some tokens to get added to the Registry of Actors. Eve also wants to join Ocean. She stakes 100 tokens to get added to The Registry of Actors. Eve is actually a malicious actor. She purchases Charlie’s dataset through Ocean, then claims it’s hers and publishes it under her own account for a slightly lower price. Furthermore, she creates several more “sock puppet” accounts, each with some more tokens staked to join, to serve as Data Curators and vouch for her copy of the dataset. Bob and Charlie discover Eve’s malice. They successfully challenge Eve and her sock puppet accounts in the Registry of Actors. Eve and her sock puppet accounts get removed from the Registry of Actors and she loses all staking tokens.
APPROACH, TRACTION & TEAM
I am greatly encouraged by the fact that Ocean were aligned to building what we term a Community Token Economy (CTE) where multiple stakeholders ( & ) partner early on to bring together complementary skills and assets.
As two existing companies (one already VC backed) they are committing real code and IP already worth several million in value*.
*This is an important point to remember when considering the valuation and token distribution of the offering.
The open, inclusive, transparent nature of IPDB foundation bodes well for how Ocean will be run and how it will solve complex governance issues as the network grows.
I am also impressed with the team’s understanding of the importance of building a community. They understand that networks are only as powerful as the community that supports it. This is why they have already signed key partnerships with XPrize Foundation, SingularityNet, Mattereum, Integration Alpha and ixo Foundation as well as agreeing an MOU with the Government of Singapore to provide coverage and indemnification for sandboxes for data sharing.
The team understands that the decentralisation movement is still in its early stages and that collaborative and partnership is a more effective model than competition and going it alone.
PLACE IN THE CONVERGENCE ECOSYSTEM STACK
Ocean protocol is a fundamental requirement for the Convergence Ecosystem Stack. It is a protocol that enables a thriving AI data marketplace. It is complementary to our other investments in IOTA and SEED both of whom provide a marketplace for machine data and bots respectively.
Marketplaces are critical to the development of the Convergence Ecosystem as they enable new data-based and tokenised business models that have never before been possible to unlock value. Distributed ledgers, blockchains and other decentralization technologies are powerful tools for authenticating, validating, securing and transporting data; but it will be marketplaces that will enable companies to build sustainable businesses and crack open the incumbent data monopolies. IOTA, SEED and now Ocean are unlocking data for more equitable outcomes for users.
submitted by Econcrypt to CryptoMoonShots [link] [comments]

Bottos 2020 Research and Development Scheme

Bottos 2020 Research and Development Scheme

https://preview.redd.it/umh8ivbsua841.png?width=554&format=png&auto=webp&s=5c16d9d9e61503e4c9d44212eecd176eda11550a
As 2020 is now here, Bottos has solemnly released its “2020 Research and development scheme”. On one hand, we adhere to the principle of transparency so that the whole community can comprehend our next step as a whole, but more importantly, it also helps our whole team to think deeply about the future and reach consensus. It is strongly believed that following these consistent follow-ups will help us to in order to achieve the best results.
Based on the efficient development of Bottos, the team’s technical achievements in consensus algorithms and smart contracts are used to deeply implement and optimize the existing technical architecture. At the same time using the community’s technical capabilities, horizontal development, expanding new functional modules and technical directions it stays closely integrated with the whole community.
In the future, we will keep on striving to achieve in-depth thinking, comprehensive planning, and flexible adjustment.


Overview of Technical Routes

https://preview.redd.it/rk9tpg2uua841.png?width=554&format=png&auto=webp&s=77e607b81f31c0d20feaa90eca81f09a23addca4
User feedback within the community is the driving force behind Bottos progress. In the development route of the community and industry we have formulated a roadmap for technical development, pointing out the right path for the team towards the right direction among the massive routes of modern technology.
As part of our 2020 research and development objective we have the following arrangements:
1. Intensifying enormous number of smart contracts and related infrastructures
After many years of development, smart contracts have gradually become the core and standard function in blockchain projects. The strength of smart contracts, ease of use, and stability represent the key capabilities of a blockchain project. As a good start, Bottos has already made great progress in the field of smart contracts. In smart contracts we still need to increase development efforts, making the ease of use and stability of smart contracts the top priority of our future development.
Reducing the barriers for developers and ordinary users to use, shortening the contract development cycle and saving users time is another important task for the team to accomplish. To this end, we have planned an efficient and easy-to-use one-stop contract development, debugging, and deployment tool that will provide multiple access methods and interfaces to the test network to support rapid deployment and rapid debugging.
2. Establishing an excellent client and user portal
The main goal here is to add an entrance point to the creation and deployment of smart contracts in the wallet client. To this end, the wallet needs to be transformed, a local compiler for smart contracts must be added, and an easy-to-use UI interface can be provided for the purpose of creating, deploying, and managing contracts to meet the needs of users with a single mouse click only.
3. Expanding distributed storage
Distributed storage is another focus of our development in the upcoming year. Only by using a distributed architecture can completely solve the issue of performance and scalability of stand-alone storage. Distributed storage suitable for blockchain needs to provide no less than single machine performance, extremely high availability, no single point of failure, easy expansion, and strong consistent transactions. These are the main key points and difficulties of Bottos in field of distributed storage in the upcoming days.
4. Reinforcing multi party secured computing
Privacy in computing is also a very important branch to deal with. In this research direction, Bottos has invested a lot of time and produced many research results on multi-party secured computing, such as technical articles and test cases. In the future, we will continue to give efforts in the direction of multi-party secured computing and apply mature technology achievements into the functions of the chain.

2020 Bottos — Product Development

Support for smart contract deployment in wallets
The built-in smart contract compiler inside the wallet supports compilation of the smart contracts in all languages provided by Bottos and integrates with the functions in the wallet. It also supports one-click deployment of the compiled contract source code in the wallet.
When compiling a contract, one can choose whether to pre-execute the contract code. If pre-execution is selected, it will connect to the remote contract pre-execution service and return the execution result to the wallet.
When deploying a contract, one can choose to deploy to the test network or main network and the corresponding account and private key of the test network or main network should be provided.

2020 Bottos-Technical Research

https://preview.redd.it/x2k65j7xua841.png?width=553&format=png&auto=webp&s=a40eae3c56b664c031b3db96f608923e670ff331
1. Intelligent smart contract development platform (BISDP)
The smart contract development platform BISDP is mainly composed of user-oriented interfaces, as well as back-end compilation and deployment tools, debugging tools, and pre-execution frameworks.
The user-oriented interface provides access methods based on WEB, PC, and mobile apps, allowing developers to quickly and easily compile and deploy contracts and provide contract template management functions. It can also manage the contract remotely by viewing the contract execution status, the consumed resources and other information.
In the compilation and deployment tool a set of smart contract source code editing, running, debugging, and deployment solutions as well as smart contract templates for common tasks are provided, which greatly reduces the threshold for developers to learn and use smart contracts. At the same time, developers and ordinary users are provided with a smart contract pre-execution framework, which can check the logical defects and security risks in smart contracts before actual deployment and promptly remind users a series of problems even before the smart contracts are actually run.
In the debugging tool, there are built-in local debugging and remote debugging tools. Multiple breakpoints can be set in the debugging tool. When the code reaches the breakpoint, one can view the variables and their contents in the current execution stack. One can also make conditional breakpoints based on the value of the variable. The code will not execute until the value reaches a preset value in memory.
In the pre-execution framework, developers can choose to pre-execute contract code in a virtual environment or a test net, checking out problems in some code that cannot be detected during compilation time and perform deeper code inspection. The pre-execution framework can also prompt the user in advance about the time and space resources required for execution.
2. Supporting Python and PHP in BVM virtual machine for writing smart contracts
We have added smart contract writing tools based on Python and PHP languages. These languages can be compiled into the corresponding BVM instruction set for implementation. These two reasons are used as the programming language for smart contracts.
For the Python language, the basic language elements supported by the first phase are:
- Logic control: If, Else, Eli, While, Break, method calls, for x in y
- Arithmetic and relational operators: ADD, SUB, MUL, DIV, ABS, LSHIFT, RSHIFT, AND, OR, XOR, MODULE, INVERT, GT, GTE, LT, LTE, EQ, NOTEQ
-
Data structure:
- Supports creation, addition, deletion, replacement, and calculation of length of list data structure
- Supports creation, append, delete, replace, and calculation of length of dict data structure
Function: Supports function definition and function calls
For the PHP language, the basic language elements supported by the first phase are :
- Logic control: If, Else, Eli, While, Break, method calls
- Arithmetic and relational operators: ADD, SUB, MUL, DIV, ABS, LSHIFT, RSHIFT, AND, OR, XOR, MODULE, INVERT, GT, GTE, LT, LTE, EQ, NOTEQ
Data structure:
- Support for creating, appending, deleting, replacing, and calculating length of associative arrays
Function: Supports the definition and calling of functions
For these two above mentioned languages, the syntax highlighting and code hinting functions are also provided in BISDP, which is very convenient for developers to debug any errors.
3. Continuous exploration of distributed storage solutions
Distributed storage in blockchain technology actually refers to a distributed database. Compared with the traditional DMBS, in addition to the ACID characteristics of the traditional DBMS, the distributed database also provides the high availability and horizontal expansion of the distributed system. The CAP principle of distributed system reveals that for a common distributed system there is an impossible triangle, only two of them can be selected among its three directions, consistency, availability, and partition fault tolerance. Distributed databases in China must require strong consistency. This is due to the characteristics of the blockchain system itself, because it needs to provide reliable distributed transaction capabilities. For these technical issues, before ensuring that the distributed storage solution reaches 100% availability, we will continue to invest more time and technical strength, do more functional and performance testing, and conduct targeted tests for distributed storage systems.
4. Boosting secured multi-party computing research and development
Secured multi-party Computing (MPC) is a cryptographic mechanism that enables multiple entities to share data while protecting the confidentiality of the data without exposing the secret encryption key. Its performance indicators, such as security and reliability are important for the realization of the blockchain. The transparent sharing of the data privacy on the distributed ledger and the privacy protection of the client wallet’s private key are truly essential.
At present, the research and development status of the platform provided by Bottos in terms of privacy-enhanced secured multi-party computing is based on the BIP32 / 44 standard in Bitcoin wallets to implement distributed management of client wallet keys and privacy protection.
Considering the higher level of data security and the distributed blockchain account as the public data of each node, further research and development are being planned on:
(1) Based on RSA, Pailliar, ECDSA and other public key cryptosystems with homomorphic attributes, as well as the GC protocol, OT protocol, and ZKP protocol to generate and verify transaction signatures between two parties;
(2) Introduce the international mainstream public key system with higher security and performance, national secret public key encryption system, and fewer or non-interactive ZKP protocols to achieve secured multi-party computing with more than two parties, allowing more nodes to participate Privacy protection of ledger data.

Summary

After years of exploration, we are now full of confidence in our current research and development direction. We are totally determined to move forward by continuous hard work. In the end, all members of Bottos also want to thank all the friends in the community for their continuous support and outstanding contributions. Your certainty is our greatest comfort and strongest motivation.

Be smart. Be data-driven. Be Bottos.
If you aren’t already in our group, please join now! https://t.me/bottosofficial
Join Our Community and Stay Updated!
Bottos Website | Twitter |Facebook | Telegram | Reddit
submitted by BOTTOS_AI to Bottos [link] [comments]

REVIEW OF SUPER SERO PROTOCOL

Hello and welcome to yet another super and intriguing edition of my blog. On today's publication, I have researched, reviewed and analysed The Sero Protocol. Remember that my reviews may not be a financial advice as I always urge my followers to still DYOR on my project researches. But trust me, my reviews have never failed. Here is a look into Sero Protocol!
Data leak has proved to be one of the biggest falls since the advent of the internet. Certain big players have fallen to this menace and raised serious trust issues on the part of their users on them. Of all problems that worry users, the biggest fear is the leak of their information over the internet. Early last year, Facebook was indicted for the harvest of user data for the US elections. This caused a massive problem for them on the part of the United States government. This problem however was nothing compared with the public backlash, which led to many deactivating their accounts. This goes to show the great importance users attach to their private information. The absence of adequate user information protection systems remains the problem to solve. The tiny of security flaw in the bitcoin block chain system raises serious concerns for both users and key players in the digital currency ecosystem. This has led to the formation of a foremost privacy centered block chain of which industry players can produce on the platform their own encoded digital currencies. The SERO block chain system leverages on Turing privacy system to give a 100% privacy to user data, with its cutting-edge NZIK algorithm. Interestingly, point to point transactions between users are ensured to be thoroughly protected To further drive in its core aim of security and data protection, Sero introduces several features to its service delivery. PLATFORM DESIGN Per design, Sero introduces several key offerings: 1. Transactions on other conventional block chain systems can be traced, however this is impossible with the Sero system. Transactions cannot be traced. 2. With the on boarding of the Sero encryption system, user transaction addresses cannot be linked to users, thus a positive thrust from convention al block chain systems. 3. Control is handed users peradventure they need run transaction audits. They can get their own external audits done on the platform. Sectoral solutions brought on by Sero: 1. Often, hospital patients bother about privacy with health workers as regards medical records. Sero solves this problem and all players in this industry can only use patient data with full permission. 2. Sero intends to create a favorable environment for auctions, it provides a completely benign and autonomous bidding environment. 3. As a function of fact, Sero is not just all business, it ensures for a technical resolution for a multi-token system which produces and circulates homomorphic smart contracts, with added contract confidentiality for the accounts. Sero goes a step further providing the Sero token. This token will become the carrier of transaction costs on the ecosystem. will be used for the following incentive purposes: • Book keeping rewards; • Computational input • Additional parts include active rewards for algorithm providers (through distributing smart contracts) • In SE-Random consensus, ownership of SERO's token might influence key parts scenarios (such as random selection of initial seed nodes); • Developers of SERO ecology will get token rewards from SERO based on the actual value of the development and application. #Bounty #SERO #Privacy #Blockchain
Website https://sero.cash/ WhitePaper https://sero.cash/en/uploadfile/upload/2019052010565112.pdf ANN https://bitcointalk.org/index.php?topic=5090910 . PitchDeck https://sero.cash/en/uploadfile/SERO_PitchDeck_EN.pdf Sero Wallet https://sero.cash/en/#wallet Explorer Block https://explorer.web.sero.cash/ Miner Tool https: // github.com/sero-cash/cminer Telegram https://t.me/SeroOfficial Twitter https://tube.com/SEROdotCASH Facebook https://www.facebook.com/SEROProtocol/ YouTube https://www.youtube .com / c / SEROdotCASH Reddithttps://www.reddit.com/SERO_Official/ Medium https://medium.com/@SERO.CASH Discord https://discordapp.com/invite/3AZVMRU GitHub https://github.com/sero- cash
Writer Username: Chika08
submitted by Chika08 to ICOAnalysis [link] [comments]

CMV: the current hype about blockchain exists only because of the speculative cryptocurrency bubble

This is not against the blockchain technology, which I think is interesting and for sure useful for certain applications. It's just against the exaggerated hype about it, labelling it as a technology that will change the world, or trigger a ground-breaking revolution.
Let's be honest: if there wasn't this bitcoin bubble, nobody would know about blockchain, and the topic would be completely boring to 95% of people. It's cryptography, and it allows to do something that's already done today in a cryptographically secured way. That's interesting for cryptography researchers, but for normal people, who tend to abstract away from such highly technical aspects like cryptography, and just care about what they can do with technology (e.g. transfer money, paying a bill), this is quite irrelevant.
Let's take for example homomorphic encryption. This is an equally amazing technology, which allows to perform arithmetic operations on ciphertexts without decrypting them first. But nobody else than cryptographers know about it. Why? Because it's not associated to anything with headline potential (like a speculation bubble where you can make a lot of money). It's just some boring complicated mathematics. So it never featured in newspaper and HackerNoon articles, and never came to the ears of the average Joe and average nerd.
Therefore: the current hype about blockchain is caused mainly by a speculation bubble, and not by the actual potential of the technology itself.
A note about the views that the real value of blockchain is that it allows to get rid of the dependency on "evil" centralized institutions like banks and governments ("them") for managing transactions and money, by allowing the common people ("we") to do it ourselves: bitcoin is already extremely centralized today. A small group of individuals and mining companies hold most of the assets and run the needed computational infrastructure. Is this really the antithesis of today's system, or is it not already developing to exactly the same with another technology? A bunch of the original "crypto-liberators" (part of "us") becoming the new centralized power ("them") that must be fought back? At least, it's a known pattern from history that after nearly every revolution, instead of utopia arriving, a bunch of the old liberators become the new tyrants, and the story repeats.
This is a footnote from the CMV moderators. We'd like to remind you of a couple of things. Firstly, please read through our rules. If you see a comment that has broken one, it is more effective to report it than downvote it. Speaking of which, downvotes don't change views! Any questions or concerns? Feel free to message us. Happy CMVing!
submitted by damp-ocean to changemyview [link] [comments]

Bottos’ chief architect Zhang Shaokui was invited as main speaker at the 2nd Global Graphene Conference

Bottos’ chief architect Zhang Shaokui was invited as main speaker at the 2nd Global Graphene Conference
On July 7, 2019, the 2nd Global Graphene Conference was held in Pudong, Shanghai.

https://preview.redd.it/hkcu0jo9o2931.png?width=554&format=png&auto=webp&s=c1f9c8db0859fae15c1ea9371584fc8c4f94d556
Nowadays, the blockchain has gone through ten years, with the development of blockchain technology, it has greatly changed the world. The graphene framework, one of its representative technologies, has also been widely used in many projects and has a profound impact in the industry. Depending on its high performance and scalability, blockchain applications are more likely to land. However, in this context, there is still a shortage of talents in blockchain developers and many technology developers lack communication. Therefore, the graphene developer conference held for solve this problem.
In the afternoon, Zhang Shaokui, the chief architect of the Bottos chain, as the main guest at the roundtable forum, surrounded the practical application of the graphene blockchain and launched a heated discussion with the parties.
He pointed out that blockchain technology is a new technology model that has emerged from the integration of various technologies, including a series of technical systems such as mathematical economic model, encryption technology, consensus algorithm, distributed storage and P2P network. Graphene acts as a blockchain toolkit.
In his opinion, graphene's concurrency is excellent and the blockchain records the participants' transfer information and market behavior, effectively confirming. When integrated with a specific application scenario, it will be an ecosystem.
Mr. Zhang said that according to the project positioning and team technology accumulation, drawing on some excellent design ideas, the new structure of the Bottos chain itself was developed. Compared with the traditional graphene blockchain framework, it has better scalability, ease of use and stronger privacy protection.
First, the Bottos chain has trading capacity far beyond Bitcoin and Ethereum throughput. Currently, the global node measures 3000+TPS. Secondly, the Bottos chain micro-service architecture design, the building block nodes are built, so that the nodes have better scalability. Once again, the Bottos Chain Self-developed Virtual Machine supports a variety of contract languages ​​(JavaScript/Golang/C++/C, etc) and provides an easy-to-use development toolchain. Greatly reduce the barriers to entry for developers and create the possibility of more widespread applications.
As an infrastructure built by artificial intelligence, the Bottos chain continues to strengthen its infrastructure. Its innovation combines big data distributed storage services, allowing the blockchain to directly serve artificial intelligence big data, making data flow as value in the blockchain. All of this is based on its security multi-party computing, homomorphic encryption, zero-knowledge proof, and other privacy protection services, making data more secure and controllable.
The meeting was success. The pursuit of the future will never change. It is not difficult to believe that blockchain technology will completely change humanity.

https://preview.redd.it/x9tesx8bo2931.png?width=554&format=png&auto=webp&s=3befd4e34f1483f1d42b2e622d6f94e4225b0984

https://preview.redd.it/4ik3wtbco2931.png?width=554&format=png&auto=webp&s=826db6c183d25b303ece319e3aa64ca3d6a39c29
If you aren’t already in our group, please join now! https://t.me/bottosofficial
Bottos Website | Twitter |Facebook | Telegram
submitted by BOTTOS_AI to Bottos [link] [comments]

AMA with Wanchain VP Lini

AMA with Wanchain VP Lini
Original article here: https://medium.com/wanchain-foundation/ama-with-wanchain-vp-lini-58ada078b4fe

“What is unique about us is that we have actually put theory into practice.”
— Lini
https://preview.redd.it/n6lo2xcmtn621.png?width=800&format=png&auto=webp&s=281acce4b45eed8acf0c52b201d01cb6f0d13507
https://preview.redd.it/10aj3ointn621.png?width=800&format=png&auto=webp&s=6a187e8a6eb5ac0445ddc73d5b0f9077f12bce39
Wanchain’s Vice President of Business Development, Lini, sat down with blockchain media organization Neutrino for an AMA covering a wide range of topics concerning Wanchain’s development.
The following is an English translation of the original Chinese AMA which was held on December 13th, 2018:
Neutrino: Could you please first share with us a little basic background, what are the basic concepts behind cross chain technology? What are the core problems which are solved with cross-chain? In your opinion, what is the biggest challenge of implementing cross chain to achieve value transfer between different chains?
Lini: Actually, this question is quite big. Let me break it down into three smaller parts:
  1. First, what is the meaning of “cross-chain”?
https://preview.redd.it/cpui6t7qtn621.png?width=720&format=png&auto=webp&s=86bc39d94b0713949c150598e2397a4f9d3ac491
In China, we like to use the word “cross-chain”, the term “interoperability” is used more frequently in foreign countries. Interoperability is also one of the important technologies identified by Vitalik for the development of a future blockchain ecosystem mentioned in the Ethereum white paper. So cross-chain is basically the concept of interoperability between chains.
  1. The core problem solved by cross chain is that of “multi-ledger” synchronous accounting
https://preview.redd.it/603dl86stn621.png?width=720&format=png&auto=webp&s=425b827298ac919f8cf05909037458a173100cc4
In essence, blockchain is a distributed bookkeeping technique, also known as distributed ledger technology. Tokens are the core units of account on each chain, there currently exist many different chains, each with their own token. Of especial importance is the way in which each ledger uses tokens to interact with each other for the purpose of clearing settlements.
  1. The core purpose of the cross-chain technology is as one of the key infrastructures of the future economy based on digital currencies.
https://preview.redd.it/3d61f26utn621.png?width=720&format=png&auto=webp&s=b735482c9734e1d32176e406adce1718be20583e
Cross chain technology is one of the foundational technological infrastructures that is necessary for the large scale application of blockchain technology.
Neutrino: As we all know, there are many different kinds of cross-chain technologies. Please give us a brief introduction to several popular cross-chain technologies on the market, and the characteristics of each of these technologies。
Lini: Before answering this question, it is very important to share two important concepts with our friends: heterogeneity and homogeneity, and centralization and decentralization.
https://preview.redd.it/n6wbs77wtn621.png?width=720&format=png&auto=webp&s=83fcadd09afb214d2aa5a2a6deb6c24d0d4da671
These two points are especially important for understanding various cross-chain technologies, because there are many different technologies and terminologies, and these are some of the foundational concepts needed for understanding them.
There are also two core challenges which must be overcome to implement cross-chain:
https://preview.redd.it/84wqd28ytn621.png?width=720&format=png&auto=webp&s=dafe1cd2993f853547b532421404e6ab86e185f1
Combining the above two points, we look at the exploration of some solutions in the industry and the design concepts of other cross-chain projects.
First I’d like to discuss the Relay solution.
https://preview.redd.it/qgcqiwlztn621.png?width=720&format=png&auto=webp&s=0925d4221c9e92e365e150638c645bef8c609b3f
However the Relay solution must consume a relatively large amount of gas to read the BTC header. Another downside is that, as we all know, Bitcoin’s blocks are relatively slow, so the time to wait for verification will be long, it usually takes about 10 minutes to wait for one block to confirm, and the best practice is to wait for 6 blocks.
The next concept is the idea of Sidechains.
https://preview.redd.it/9cg79bl1un621.png?width=720&format=png&auto=webp&s=1260e14213b1757eadc4b6141a365ed3b0e20316
This solution is good, but not all chains contain SPV, a simple verification method. Therefore, there are certain drawbacks. Of course, this two way peg way solves challenge beta very well, that is, the atomicity of the transaction.
These two technical concepts have already been incorporated into a number of existing cross chain projects. Let’s take a look at two of the most influential of these.
The first is Polkadot.
https://preview.redd.it/1o3xwz93un621.png?width=720&format=png&auto=webp&s=249909a33b5420050a6010b961a944285fc94926
This is just a summary based on Polkadot’s whitepaper and most recent developments. The theoretical design is very good and can solve challenges alpha and beta. Last week, Neutrino organized a meetup with Polkadot, which we attended. In his talk, Gavin’s focus was on governance, he didn’t get into too much technical detail, but Gavin shared some very interesting ideas about chain governance mechanisms! The specific technical details of Polkadot may have to wait until after their main net is online before it can be analyzed.
Next is Cosmos.
https://preview.redd.it/5gtjf6x4un621.png?width=720&format=png&auto=webp&s=94d6408ff65dc7041316f0130867888e108848b2
Cosmos is a star project who’s basic concept is similar to Polkadot. Cosmos’s approach is based on using a central hub. Both projects both take into account the issue of heterogeneous cross-chain transactions, and both have also taken into account how to solve challenges alpha and beta.
To sum up, each research and project team has done a lot of exploration on the best methods for implementing cross-chain technology, but many are still in the theoretical design stage. Unfortunately, since the main net has not launched yet, it is not possible to have a more detailed understanding of each project’s implementation. A blockchain’s development can be divided into two parts: theoretical design, and engineering implementation. Therefore, we can only wait until after the launch of each project’s main network, and then analyze it in more detail.
Neutrino: As mentioned in the white paper, Wanchain is a general ledger based on Ethereum, with the goal of building a distributed digital asset financial infrastructure. There are a few questions related to this. How do you solve Ethereum’s scaling problem? How does it compare with Ripple, which is aiming to be the standard trading protocol that is common to all major banks around the world? As a basic potential fundamental financial infrastructure, what makes Wanchain stand out?
Lini: This question is actually composed of two small questions. Let me answer the first one first.
  1. Considerations about TPS.
First of all, Wanchain is not developed on Ethereum. Instead, it draws on some of Ethereum’s code and excellent smart contracts and virtual machine EVM and other mature technical solutions to build the mainnet of Wanchain.
The TPS of Ethereum is not high at this stage, which is limited by various factors such as the POW consensus mechanism. However, this point also in part is due to the characteristics of Ethereum’s very distributed and decentralized features. Therefore, in order to improve TPS, Wanchain stated in its whitepaper that it will launch its own POS consensus, thus partially solving the performance issues related to TPS. Wanchain’s POS is completely different from the POS mechanism of Ethereum 2.0 Casper.
Of course, at the same time, we are also paying close attention to many good proposals from the Ethereum community, such as sharding, state channels, side chains, and the Raiden network. Since blockchain exists in the world of open source, we can of course learn from other technological breakthroughs and use our own POS to further improve TPS. If we have some time at the end, I’d love to share some points about Wanchain’s POS mechanism.
  1. Concerning, Ripple, it is completely different from what Wanchain hopes to do.
Ripple is focused on exchanges between different fiat pairs, the sharing of data between banks and financial institutions, as a clearing and settlement system, and also for the application of DLT, for example the Notary agent mechanism.
Wanchain is focused on different use cases, it is to act as a bridge between different tokens and tokens, and between assets and tokens. For various cross-chain applications it is necessary to consume WAN as a gas fee to pay out to nodes.
So it seems that the purpose Ripple and Wanchain serve are quite different. Of course, there are notary witnesses in the cross-chain mechanism, that is, everyone must trust the middleman. Ripple mainly serves financial clients, banks, so essentially everyone’s trust is already there.
Neutrino: We see that Wanchain uses a multi-party computing and threshold key sharing scheme for joint anchoring, and achieves “minimum cost” for integration through cross-chain communication protocols without changing the original chain mechanism. What are the technical characteristics of multi-party computing and threshold key sharing? How do other chains access Wanchain, what is the cross-chain communication protocol here? What is the cost of “minimum cost?
Lini: The answer to this question is more technical, involving a lot of cryptography, I will try to explain it in a simple way.
  1. About sMPC -
It stands for secure multi-party computation. I will explain it using an example proposed by the scholar Andrew Yao, the only Turing Award winner in China. The scenario called Yao’s Millionaire Problem. How can two millionaires know who is wealthier without revealing the details of their wealth to each other or a trusted third party? I’m not going to explain the answer in detail here, but those who are interested can do a web search to learn more.
In sMPC multiple parties each holding their own piece of private data jointly perform a calculation (for example, calculating a maximum value) and obtain a calculation result. However, in the process, each party involved does not leak any of their respective data. Essentially sMPC calculation can allow for designing a protocol without relying on any trusted third parties, since no individual ever has access to the complete private information.
Secure multiparty computing can be abstractly understood as two parties who each have their own private data, and can calculate the results of a public function without leaking their private data. When the entire calculation is completed, only the calculation results are revealed to both parties, and neither of them knows the data of the other party and the intermediate data of the calculation process. The protocol used for secure multiparty computing is homomorphic encryption + secret sharing + OT (+ commitment scheme + zero knowledge proofs, etc.)
Wanchain’s 21 cross chain Storeman nodes use sMPC to participate in the verification of a transaction without obtaining of a user’s complete private key. Simply put, the user’s private key will have 21 pieces given to 21 anonymous people who each can only get 1/21 part, and can’t complete the whole key.
  1. Shamir’s secret sharing
There are often plots in a movie where a top secret document needs to be handed over to, let’s say five secret agents. In order to protect against the chance of an agent from being arrested or betraying the rest, the five agents each hold only part of a secret key which will reveal the contents of the documents. But there is also a hidden danger: if one the agents are really caught, how can the rest of the agents access the information in the documents? At this point, you may wonder if there is any way for the agents to still recover the original text with only a portion of the keys? In other words, is there any method that allows a majority of the five people to be present to unlock the top secret documents? In this case, the enemy must be able to manipulate more than half of the agents to know the information in the secret documents.
Wanchain uses the threshold M<=N; N=21; M=16. That is to say, at least 16 Storeman nodes must participate in multi-party calculation to confirm a transaction. Not all 21 Storeman nodes are required to participate. This is a solution to the security problem of managing private keys.
Cross-chain communication protocols refers to the different communication methods used by different chains. This is because heterogeneous cross-chain methods can’t change the mechanism of the original chains. Nakamoto and Vitalik will not modify their main chains because they need BTC and ETH interoperability. Therefore, project teams that can only do cross-chain agreements to create different protocols for each chain to “talk”, or communicate. So the essence of a cross-chain protocol is not a single standard, but a multiple sets of standards. But there is still a shared sMPC and threshold design with the Storeman nodes.
The minimum cost is quite low, as can be shown with Wanchain 3.0’s cross chain implementation. In fact it requires just two smart contracts, one each on Ethereum and Wanchain to connect the two chains. To connect with Bitcoin all that is needed is to write a Bitcoin script. Our implementation guarantees both security and decentralization, while at the same time remaining simple and consuming less computation. The specific Ethereum contract and Bitcoin scripts online can be checked out by anyone interested in learning more.
Neutrino: What kind of consensus mechanism is currently used by Wanchain? In addition, what is the consensus and incentive mechanism for cross-chain transactions, and what is the purpose of doing so? And Wanchain will support cross-chain transactions (such as BTC, ETH) on mainstream public chains, asset cross-chain transactions between the alliance chains, and cross-chain transactions between the public and alliance chains, how can you achieve asset cross-chain security and privacy?
Lini: It is now PPOW (Permissioned Proof of Work), in order to ensure the reliability of the nodes before the cross-chain protocol design is completed, and to prepare to switch to POS (as according to the Whitepaper roadmap). The cross-chain consensus has been mentioned above, with the participation of a small consensus (at least 16 nodes) in a set of 21 Storeman nodes through sMPC and threshold secret sharing.
In addition, the incentive is achieved through two aspects: 1) 100% of the cross chain transaction fee is used to reward the Storeman node; 2) Wanchain has set aside a portion of their total token reserve as an incentive mechanism for encouraging Storeman nodes in case of small cross-chain transaction volume in the beginning.
It can be revealed that Storeman participation is opening gradually and will become completely distributed and decentralized in batches. The first phase of the Storeman node participation and rewards program is to be launched at the end of 2018. It is expected that the selection of participants will be completed within one quarter. Please pay attention to our official announcements this month.
In addition, for public chains, consortium chains, and private chains, asset transfer will also follow the cross-chain mechanism mentioned above, and generally follow the sMPC and threshold integration technology to ensure cross-chain security.
When it comes to privacy, this topic will be bigger. Going back to the Wanchain Whitepaper, we have provided privacy protection on Wanchain mainnet. Simply put, the principle is using ring signatures. The basic idea is that it mixes the original address with many other addresses to ensure privacy. We also use one-time address. In this mechanism a stamp system is used that generates a one-time address from a common address. This has been implemented since our 2.0 release.
But now only the privacy protection of native WAN transactions can be provided. The protection of cross-chain privacy and user experience will also be one of the important tasks for us in 2019.
Neutrino: At present, Wanchain uses Storeman as a cross-chain trading node. Can you introduce the Storeman mechanism and how to protect these nodes?
Lini: Let me one problem from two aspects.
  1. As I introduced before in my explanation of sMPC, the Storeman node never holds the user’s private key, but only calculates the transaction in an anonymous and secure state, and the technology prevents the Storeman nodes from colluding.
  2. Even after technical guarantees, we also designed a “double protection” against the risk from an economic point of view, that is, each node participating as a Storeman needs to pledge WAN in the contract as a “stake”. The pledge of WAN will be greater than the amount of any single transaction as a guarantee against loss of funds.
If the node is malicious (even if it is a probability of one in a billion), the community will be compensated for the loss caused by the malicious node by confiscation of the staked WAN. This is like the POS mechanism used by ETH, using staking to prevent bad behavior is a common principle.
Neutrino: On December 12th, the mainnet of Wanchain 3.0 was launched. Wanchain 3.0 opened cross-chain transactions between Bitcoin, Ethereum and ERC20 (such as MakerDao’s stable currency DAI and MKR). What does this version mean for you and the industry? This upgrade of cross-chain with Bitcoin is the biggest bright spot. So, if now you are able to use Wanchain to make transactions between what is the difference between tokens, then what is the difference between a cross chain platform like Wanchain and cryptocurrency exchanges?
Lini: The release of 3.0 is the industry’s first major network which has crossed ETH and BTC, and it has been very stable so far. As mentioned above, many cross-chain, password-protected theoretical designs are very distinctive, but for engineering implementation, the whether or not it can can be achieved is a big question mark. Therefore, this time Wanchain is the first network launched in the world to achieve this. Users are welcome to test and attack. This also means that Wanchain has connected the two most difficult and most challenging public networks. We are confident we will soon be connecting other well-known public chains.
At the same time of the release of 3.0, we also introduced cross chain integration with other ERC20 tokens in the 2.X version, such as MakerDao’s DAI, MKR, LRC, etc., which also means that more tokens of excellent projects on Ethereum will also gradually be integrated with Wanchain.
Some people will be curious, since Wanchain has crossed so many well-known public chains/projects; how is it different with crypto exchanges? In fact, it is very simple, one centralized; one distributed. Back to the white paper of Nakamoto, is not decentralization the original intention of blockchain? So what Wanchain has to do is essentially to solve the bottom layer of the blockchain, one of the core technical difficulties.
Anyone trying to create a DEX (decentralized exchange); digital lending and other application scenarios can base their application on Wanchain. There is a Wanchain based DEX prototype made by our community members Jeremiah and Harry, which quite amazing. Take a look at this video below.
https://www.youtube.com/watch?v=codcqb66G6Q
Neutrino: What are the specific application use cases after the launch of Wanchain 3.0? Most are still exploring small-scale projects. According to your experience, what are the killer blockchain applications of the future? What problems need to be solved during this period? How many years does it take?
Lini:
  1. Wanchain is just a technology platform rather than positioning itself as an application provider; that is, Wanchain will continue to support the community, and the projects which use cross-chain technology to promote a wide range of use cases for Wanchain.
  2. Cross-chain applications that we anticipate include things like: decentralized exchanges, digital lending, cross chain games, social networking dAPPs, gambling, etc. We also expect to see applications using non fungible tokens, for example exchange of real assets, STOs, etc.
  3. We recently proposed the WanDAPP solution. Simply speaking, a game developer for example has been developing on Ethereum, and ERC20 tokens have been issued, but they hope to expand the player base of their games to attract more people. To participate and make full use of their DAPP, you can consider using the WanDAPP solution to deploy the game DAPP on other common platforms, such as EOS, TRON, etc., but you don’t have to issue new tokens on these chains or use the previous ERC20 tokens. In this way the potential user population of the game can be increased greatly without issuing more tokens on a new chain, improving the real value of the original token. This is accomplished completely using the cross-chain mechanism of Wanchain.
  4. For large-scale applications, the infrastructure of the blockchain is not yet complete, there are issues which must first be dealt with such as TPS, sharding, sidechains, state channels, etc. These all must be solved for the large-scale application of blockchain applications. I don’t dare to guess when it will be completed, it depends on the progress of various different technical projects. In short, industry practitioners and enthusiasts need a little faith and patience.
Neutrino community member Block Venture Capital Spring: Will Wanchain be developing any more cross chain products aimed at general users? For example will the wallet be developed to make automatic cross chain transfers with other public chains? Another issue the community is concerned about is the currency issuance. Currently there are more than 100 million WAN circulating, what about the rest, when will it be released?
Lini: As a cross-chain public chain, we are not biased towards professional developers or ordinary developers, and they are all the same. As mentioned above, we provide a platform as infrastructure, and everyone is free to develop applications on us.
For example, if it is a decentralized exchange, it must be for ordinary users to trade on; if it is some kind of financial derivatives product, it is more likely to be used by finance professionals. As for cross-chain wallets which automatically exchange, I’m not sure if you are talking about distributed exchanges, the wallet will not be “automatic” at first, but you can “automatically” redeem other tokens.
Finally, the remaining WAN tokens are strictly in accordance with the plan laid out in the whitepaper. For example, the POS node reward mentioned above will give 10% of the total amount for reward. At the same time, for the community, there are also rewards for the bounty program. The prototype of the DEX that I just saw is a masterpiece of the overseas community developers, and also received tokens from our incentive program.
Neutrino community member’s question: There are many projects in the market to solve cross-chain problems, such as: Cosmos, Polkadot, what are Wanchain’s advantages and innovations relative to these projects?
Lini: As I mentioned earlier, Cosmos and pPolkadot all proposed very good solutions in theory. Compared with Wanchain, I don’t think that we have created anything particularly unique in our theory. The theoretical basis for our work is cryptography, which is derived from the academic foundation of scholars such as Yao Zhizhi and Silvio Micali. Our main strong point is that we have taken theory and put it into practice..
Actually, the reason why people often question whether a blockchain project can be realized or not is because the whitepapers are often too ambitious. Then when they actually start developing there are constant delays and setbacks. So for us, we focus on completing our very solid and realizable engineering goals. As for other projects, we hope to continue to learn from each other in this space.
Neutrino community member Amos from Huobi Research Institute question: How did you come to decide on 21 storeman nodes?
Lini: As for the nodes we won’t make choices based on quantity alone. The S in the POS actually also includes the time the tokens are staked, so that even if a user is staking less tokens, the amount of time they stake them for will also be used to calculate the award, so that is more fair. We designed the ULS (Unique Leader Selection) algorithm in order to reduce the reliance on the assumption of corruption delay (Cardano’s POS theory). which is used for ensuring fairness to ensure that all participants in the system can have a share of the reward, not only few large token holders.
Wu Di, a member of the Neutrino community: Many big exchanges have already begun to deploy decentralized exchanges. For example, Binance, and it seems that the progress is very fast. Will we be working with these influential exchanges in the future? We we have the opportunity to cooperate with them and broaden our own influence?
Lini: I also have seen some other exchange’s DEX. Going back the original point, distributed cross-chain nodes and centralized ones are completely different. I’m guessing that most exchanges use a centralized cross-chain solution, so it may not be the same as the 21 member Storeman group of Wanchain, but I think that most exchanges will likely be using their own token and exchange system. This is my personal understanding. But then, if you are developing cross chain technology, you will cooperate with many exchanges that want to do a DEX. Not only Binance, but also Huobi, Bithumb, Coinbase… And if there is anyone else who would like to cooperate we welcome them!
Neutrino community member AnneJiang from Maker: Dai as the first stable chain of Wanchain will open a direct trading channel between Dai and BTC. In relation to the Dai integration, has any new progress has been made on Wanchain so far?
Lini: DAI’s stable currency has already been integrated on Wanchain. I just saw it yesterday, let me give you a picture. It’s on the current 3.0 browser, https://www.wanscan.org/, you can take a look at it yourself.
This means that users with DAI are now free to trade for BTC, or ETH or some erc20 tokens. There is also a link to the Chainlink, and LRC is Loopring, so basically there are quite a few excellent project tokens. You may use the Wanchain to trade yourself, but since the DEX is not currently open, currently you can only trade with friends you know.
https://preview.redd.it/jme5s99bun621.png?width=800&format=png&auto=webp&s=7ba3d430ba3e7ddcab4dbcdedc05d596d832f5a7

About Neutrino

Neutrino is a distributed, innovative collaborative community of blockchains. At present, we have established physical collaboration spaces in Tokyo, Singapore, Beijing, Shanghai and other places, and have plans to expand into important blockchain innovation cities such as Seoul, Thailand, New York and London. Through global community resources and partnerships, Neutrino organizes a wide range of online an offline events, seminars, etc. around the world to help developers in different regions better communicate and share their experiences and knowledge.

About Wanchain

Wanchain is a blockchain platform that enables decentralized transfer of value between blockchains. The Wanchain infrastructure enables the creation of distributed financial applications for individuals and organizations. Wanchain currently enables cross-chain transactions with Ethereum, and today’s product launch will enable the same functionalities with Bitcoin. Going forward, we will continue to bridge blockchains and bring cross-chain finance functionality to companies in the industry. Wanchain has employees globally with offices in Beijing (China), Austin (USA), and London (UK).
You can find more information about Wanchain on our website. Additionally, you can reach us through Telegram, Discord, Medium, Twitter, and Reddit. You can also sign up for our monthly email newsletter here.
https://preview.redd.it/w7ezx27dun621.png?width=720&format=png&auto=webp&s=6ef7a651a2d480658f60d213e1431ba636bfbd8c
submitted by maciej_wan to wanchain [link] [comments]

An Introduction

Hello and welcome to Tangrams !
If you are already part of our community and found your way here from Discord, good to see you. We hope you'll enjoy our brand new subreddit.
In case you are new to Tangram, first of all we are very glad to have you onboard! Please read on to get gain some further information.

What is Tangram?

Tangram is a DAG (Directed Acyclic Graph) privacy-focused cryptocurrency. Tangram aims to be a private and anonymous digital currency, a platform for near instant and feeless exchange of value which allows users to securely manage personal and financial information.
Our mission is to create the most private distributed ledger technology the world has ever seen, one that is provably impervious to re-identification attacks. It must be fast, feeless, and infinitely scalable. Tangram will function as a true cryptocurrency, while supporting other capabilities such as smart contracts, data storage, and communications. Tangram is a startup focused on cutting-edge engineering, compelling user experience, irresistible branding, and a vibrant community, all built from scratch. Tangram will be the end-to-end solution you know you can trust to safeguard your identity, your data, your business, and your rights in a world of prying eyes. Privacy by Design.
It is currently in development, with the testnet and mainnet planned for the short to middle term. (More information regarding various expected deadlines can be found here )

Where can I find more information on the technical aspects of Tangram?

There’s a range of resources you can consult to learn more about our project:
A little rundown of what's been released so far, and what to expect from the near future alpha releases:
Released
View the roadmap for further details.

How will Tangram be distributed?

The token metrics of Tangram are as follows:
Maximum Token Supply: 183,744,990
Once mainnet launches, everyone is going to have the opportunity to participate in the token distribution process. The details of which method(s) will be implemented are currently being discussed and will be finalized soon. As you can see above, 65% of the total supply ( 119,434,243.5 SNKs) are reserved for public distribution.

How can I get involved in the project?

We are a community-centered project and welcome all, especially those that wish to contribute to our growth and improvement. If you believe you have some spare time and skills to dedicate, feel free to fill out our Community Talent Pool Form!
Alternatively, if you just want to get involved more generally in our vibrant community and have access to development in real time, we recommend joining our Discord. Most of the fun happens there! If you have any questions or queries, do not hesitate to come by the Discord where you are sure to get a quick response.

FAQ

TBC
See Manifesto. https://medium.com/@getsneak/a-sneak-manifesto-163eb38e00ea
No.
Public: 65% Contributors: 10% Founders: 7.84% Development Fund: 10% Community Fund: 7.16%
Through lending your computation power for research and development against finding a cure (diseases such as Alzheimer’s disease, Huntington’s disease, cystic fibrosis, BSE (Mad Cow disease), an inherited form of emphysema, and even many cancers). Find out more here: https://foldingathome.org/ How it works in Tangram public free distribution: https://medium.com/@getsneak/f-h-faucet-alpha-0-1-testing-d179568d1f40
When Tangram goes main-net (end of December 2018).
Contributors donated a combination of Monero, Nano, Bitcoin, and Ethereum to the developers to support the development throughout the early stages. These donations allowed Matthew Hellyer to move to developing the Tangram platform full-time.
The Community Fund is for those who have provably donated to a privacy DAG project prior to February 28th that turned out to be a scam. Contact the devs to receive Tangrams in return for your scammed donations at a rate of half the dollar value of your donation the day it was sent. 26% of the Community Fund has already been claimed.
Yes. More information on this will be released prior to main-net.
Testing is open to all. See here: https://medium.com/tangram-tgm/test-net0-release-ac5ad5d691ae
TBC - Currently the only bug bounty available would be associated with the faucet: https://medium.com/@getsneak/f-h-faucet-alpha-0-1-testing-d179568d1f40 (Please see Rules & Rewards section). When main-net has launched and Tangram is open-sourced further bug bounties will be defined.
183,744,990
C#
See here for technical introduction: https://tangrams.io/wp-content/uploads/2018/12/Tangram_An_Introduction-2018-12-19-03-27.pdf
No, transactions will be fee-less
TBC (Better estimate will be provided 3 months after main-net)
This is not a primary focus. We will provide documentation that allows any 3rd party to develop and integrate with Tangram.
Not yet decided, we are finalising the faucet models and their distribution mechanism which in turn affects the amount received.
No. The [email protected] work unit will calibrate to your CPU.
Yes. The name of the 3rd party security audit firm will be released once a contract has been signed.
Tangram’s codebase is built from scratch. To protect the integrity of the project before main-net and prior to a security audit by a reputable firm. Following main-net there will be discussions and post made to define the properties in which need to be met for open-source.
Yes.
The view key of the genesis block will be made available for all once main-net is live.
Yes, prior to main-net.
Yes.
There are no monetary incentives for running a node. Will nodes be private? Yes.
YES! Come poke around, join the crew, pingpong doesn’t bite.
TBC - Current estimations are 3 month – 8 months.
No. You will not find any exchange or OTC channel supported in the Tangram server by team members.
https://trello.com/b/x02K9WgV
Sneak was the code name of Tangram before the current name was chosen.
No.
Yes. See here for more information - https://pastebin.com/8YKrJJEZ https://pastebin.com/iHGMMxBr
Current live channels include: Discord: https://discord.gg/GhX6nUC Reddit: https://www.reddit.com/Tangrams/ (not live - pending website) Telegram: https://t.me/Tangrams See the #resource channel in Discord to see all articles and references to Tangram
See here:
https://medium.com/tangram-tgm/breaking-down-tangrams-consensus-mechanism-part-1-ba4857539eb
https://medium.com/tangram-tgm/breaking-down-tangrams-consensus-mechanism-part-2-6d88b435bef7
https://tangrams.io
No.
Yes, although pre-announcement. Official announcement will be made once we have prepared main-net. https://bitcointalk.org/index.php?topic=3022248.0
Nodes can run on Windows, Linux, Mac, Raspberry Pi or any Linux distro
submitted by sw33t_sneak to Tangrams [link] [comments]

Fully Homomorphic Encryption without Modulus Switching f ... Fully Homomorphic Encryption from the Ground Up How to mine SERO coins on your PC and earn SERO coins BMH2018 Pitch Homomorphic Encryption for Arithmetic of Approximate Numbers

Hashed Interview: Prof. Jung-hee Cheon, Homomorphic Encryption & Blockchain. First off, welcome to Hashed, and thank you for meeting with us. Thank you for the invite! Homomorphic encryption is extensively applied to support simple aggregation, numerical computation of encrypted data, and retrieval of private information. The breakthrough in homomorphic encryption theory has led to fully homomorphic encryption, which can compute arbitrary functions of encrypted data . Homomorphic encryption is generally considered as a key approach to solve database query ... Homomorphic encryption is a form of encryption that allows computation on ciphertexts, generating an encrypted result which, when decrypted, matches the result of the operations as if they had been performed on the plaintext. Using Level-1 Homomorphic Encryption To Improve Threshold DSA Signatures For Bitcoin Wallet Security Dan Boneh1, Rosario Gennaro2, and Steven Goldfeder3 1 Stanford University [email protected] 2 City College, City University of New York [email protected] 3 Princeton University [email protected] Abstract. Recently Gennaro et al. (ACNS ’16) presented a threshold-optimal ... During the last few years, homomorphic encryption schemes have been studied extensively since they have become more and more important in many different cryptographic protocols such as, e.g ...

[index] [31009] [21214] [1978] [37527] [1981] [814] [30802] [35558] [11873] [29888]

Fully Homomorphic Encryption without Modulus Switching f ...

We suggest a method to construct a homomorphic encryption scheme for approximate arithmetic. It supports approximate addition and multiplication of encrypted messages, together with the rescaling ... Fully Homomorphic Encryption from the Ground Up ... Asymmetric encryption - Simply explained - Duration: 4:40. Simply Explained - Savjee 453,096 views. 4:40. Math Behind Bitcoin and Elliptic Curve ... 1967 Shelby GT500 Barn Find and Appraisal That Buyer Uses To Pay Widow - Price Revealed - Duration: 22 ... Fully Homomorphic Encryption from the Ground Up - Duration: 1:02:31. TheIACR 1,029 views ... - Zero knowledge proof encryption and Homomorphic Encryption - Issue Anonymous Assets and Tokens - SERO Ecosystem of SERO Coin, Tokens, Tickets, Packages - Achieved 20x encryption speed agains ... MIT Bitcoin Expo 2019 - Zero Knowledge Proofs and Smart Contracts with Bulletproofs - Duration: 27 ... Homomorphic Encryption from Learning with Errors: Concep ... - Duration: 23:16. TheIACR 2,741 ...

#